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We investigate the elastic properties of small droplets under compression. The compression of a bubble by
two parallel plates is solved exactly and it is shown that a lowest-order expansion of the solution reduces to a
form similar to that obtained by Morse and Witten@Europhys. Lett.22, 549~1993!#. Other systems are studied
numerically and results for configurations involving between 2 and 20 compressing planes are presented. It is
found that the response to compression depends on the number of planes. The shear modulus is also calculated
for common lattices and the stability crossover between fcc and bcc is discussed.@S1063-651X~96!09711-5#

PACS number~s!: 82.70.Kj, 81.40.Jj, 62.20.Dc

I. INTRODUCTION

Emulsions consist of a mixture of two immiscible fluids,
one of which, generally an oil, is dispersed as small droplets
in the continuous phase of the other fluid, generally water.
The interfaces are stabilized by a surfactant, preventing coa-
lescence. Emulsions are materials with quite unusual proper-
ties: despite being comprised solely of fluids, they become
elastic solids when the droplets are compressed to a large
enough volume fractionw by extracting the continuous
phase by the application of an osmotic pressureP. The ori-
gin of the elasticity is the interfacial energy of the droplets.
At low volume fractions, the surface tensions ensures that
the droplets are spherical in shape. However, at higherw, the
packing constraints force the droplets to deform, thus storing
energy. Consequently, it is a fundamental issue to determine
the increase of the surface area of a droplet resulting from an
arbitrary deformation.

It is generally believed that the application of a shear
strain to a compressed emulsion causes the droplets to fur-
ther deform, thereby storing more energy@1–5#. According
to this picture, the scale of both the osmotic pressure, and the
elastic shear modulusG is set by the Laplace pressure of the
droplets (2s/R), whereR is the radius of an undeformed
droplet. Recent experiments@6# on the elastic properties of
compressed monodisperse emulsions of silicone-oil in water
confirm the role of the Laplace pressure: the experimental
values ofG andP for different droplet sizes, when scaled by
(s/R), collapse on a single curve@6#.

Compression modifies the elastic properties of a disor-
dered emulsion, changing the response from liquidlike to sol-
idlike. The onset of solidlike behavior is gradual; bothP and
G increase smoothly from zero as the system is compressed
abovewc'0.64@6#, the volume fraction at which disordered
monodisperse droplets are first deformed@7#. For polydis-
perse emulsions,wc is larger @8#, reflecting more efficient
packing. Two separate elastic responses of the droplets are
therefore of interest: to direct compression and to shear.

The increase of the surface area of a droplet under com-
pression comes from the relatively low cost of deformation
compared to the compressibility of the internal fluid. Thus, it
is very reasonable to assume that the droplets are composed
of an incompressible fluid, and may be consequently consid-

ered to have a fixed volume. The effect of gravity may be
nullified by density matching of the oil and water, but in any
case would be tiny because of the large surface tension and
small droplet size~typically of a mm! of the experimental
systems.

When the droplets are compressed just beyond the point
they start to deform, i.e.,w*wc , they form small facets
separated by thin surfactant-water-surfactant films. Each of
the facets created on the droplet surface has the effect of
locally decreasing the droplet surface, but volume conserva-
tion makes the dropletglobally increase its surface, and thus
its energy. Due to such nonlocal effects, the determination of
the droplet response to compression requires that it be con-
sidered as a whole. Consequently, a complete analytic solu-
tion is limited to a few simple cases, one of which is a drop
squeezed between two parallel plates, to be presented in Sec.
III. The response to shear is still more difficult, but fortu-
nately, numerical tools capable of handling such problems
have recently become available@9#.

Upon more compression, droplets gradually take the
shape of a rounded polyhedron. At this point, the water is
contained within the connected network of voids left be-
tween the oil droplets. This network is made of thin veins,
along which the facets meet, and which connect larger re-
gions located at the corners of the polyhedra. Asw→1, i.e.,
in the so-called dry foam limit, mechanical equilibrium im-
poses constraints on these regions which were first discussed
by Plateau@10#. In particular, exactly three films meet at
equal angles~120°) along the veins which become the edges
of the polyhedra. Additionally, the corner regions reduce to a
point at which four edges meet at equal tetrahedral angles.
These rules do not apply until most of the continuous phase
has been extracted.

The elasticity of emulsions has been the object of numer-
ous investigations over the last decade. The first theoretical
attempts@1,2# were for ordered lattices in two dimensions,
which we shall briefly treat in Sec. II, mainly in order to
contrast them with three-dimensional~3D! systems. It should
be noted that two-dimensional~2D! systems are important in
their own right, both theoretically and experimentally. For
example, the effects of polydispersity and disorder are
largely studied in two dimensions@3,11,12#.

For real ~three-dimensional! bubbles, the only analytical
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expression@4# for the behavior of a droplet surface under
compression involves the application of an infinitesimal
force at a single point. A simplified approach consists in
assuming that each droplet becomes a truncated sphere under
compression@13#. Using each of these approaches, the shear
modulus of a simple cubic~sc! lattice has been derived@5#:
the truncated sphere approximation yields a shear modulus
that exhibits a discontinuous onset atwc , whereas the infini-
tesimal force approach predicts a shear modulus that rises
continuously from zero at the onset, with a logarithmically
divergent derivative. This is in contrast with the smooth qua-
silinear increase ofG at wc found experimentally for disor-
dered emulsions.

The relative importance of the disorder of the emulsions,
its polydispersity, and the response of the droplets them-
selves is the object of current research@14#. This paper is
concerned with the last: we present the results of an investi-
gation of the response of an individual droplet to deforma-
tion. In Sec. II we present results for the 2D case. Section III
derives exact results for the compression of a droplet by two
parallel plates. In the limit of infinitesimal compression, our
results are compared with Morse and Witten’s expression
@4#. For a large range of compressions, we show that the
energy has an anharmonic power-law response to compres-
sion. In Sec. IV, we present numerical results for the com-
pression of a droplet in several local environments using
Brakke’s Surface Evolver~SE! software@9#. We again dem-
onstrate that the energy of the squeezed droplet is anhar-
monic,with the power depending on the number of facets.
Section V describes the results obtained for a selection of
space-filling structures at the dry foam limit. Section VI con-
tains numerical calculations of the droplet response to a
shear deformation. We discuss our results and conclude in
Sec. VII.

II. RESPONSE IN TWO DIMENSIONS

Two-dimensional systems have characteristics not found
in three dimensions. For example, monodisperse arrays of
disks order easily@15# in an hexagonal array of surface frac-
tion wc5p/(2A3)'0.9069. The elastic properties of two-
dimensional ordered systems have been discussed exten-
sively by Princen@1,16#. The response to deformation is also
simpler in two dimensions. A minimum free surface~a free
curve in the present case! is characterized by a uniform pres-
sure or, equivalently by a constant mean curvature. In two
dimensions, the surface is parametrized by only one radius of
curvature and the minimum free surface is therefore always
an arc of a circle.

Let us consider the deformation of a two-dimensional
droplet of constant area confined inside a regular polygon of
n sides. Only forn5 3, 4, and 6 can such polygons be
tessellated, but we shall consider generaln, in particular, to
contrast the two- and three-dimensional results. The ratio of
droplet area to polygon area is denoted byw. Only for the
tessellating cases willw represent the surface covering frac-
tion of the corresponding lattice. In the following, we assume
that the droplet does not adhere to the surface so that the
contact angles are zero. Atwc5(p/n)cot(p/n), the circular
droplet is undeformed and touches the polygon at exactlyn
points, being the midpoints of the polygon’s edges. If the

polygon is now shrunk uniformly, the droplet will distort,
and its new minimum-perimeter shape will consist of small
facets joined by circular arcs. Asw increases abovewc , the
length of the flat portions increases and the radius of curva-
ture of the arcs decreases, reflecting increased droplet pres-
sure. Atw51, the radius of curvature of the arcs becomes
zero~infinite pressure!, and the bubble takes on the shape of
the polygonal cell.

The interfacial energy of the droplets is the product of
their line tensions and the perimeter lengthl . It is conve-
nient to measure the excess energy by the following dimen-
sionless quantity:

«[
l

2pR
21, ~1!

whereR is the radius of the undeformed circular droplet.
Similarly, the degree of compression will be measured by the
following dimensionless displacement:

j[
R2h

R
, ~2!

whereh is the perpendicular distance from the facets to the
center of the droplet.j is simply related to the volume frac-
tion throughj512Awc /w. For any regular polygonal cell,
« can be shown to be, forw>wc ,

«5
1

Awwc

2F ~12w!~12wc!

wwc
G1/221. ~3!

For w slightly greater thanwc , we may expand the previous
expression in terms of (w2wc), and get

«'S 1

8wc
2~12wc!

D ~w2wc!
2'S 1

2~12wc!
D j2. ~4!

Therefore, for small compression, the energy is harmonic,
and the prefactor depends on the number of faces of the
polygon throughwc . This is shown in Fig. 1 where the ex-
cess energy per facet is plotted for the tessellating cases
n 5 3, 4, and 6. The end of each curve corresponds to
w→1 for each lattice. The logarithmic inset shows the wide
range over which harmonicity holds as well as then depen-
dence of the prefactor expressed by the different intercepts.

In two dimensions, the scaled osmotic pressure can be
obtained from

P/~s/R!52w2
]«

]w
, ~5!

and we find, using Eq.~3!,

P/~s/R!5S w

wc
D 1/2 F S 12wc

12w D 1/221G . ~6!

This last expression, which depends onn through wc , is
valid for all tessellations in two dimensions. Forw*wc , P
can be shown to increase linearly with (w2wc).

In the model proposed by Princen@1,16#, droplets are
monodisperse cylindrical objects packed in a hexagonal ar-
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ray (n56). In the dry foam limit, this configuration satisfies
Plateau’s rules for packing in two dimensions. Forw.wc ,
the osmotic pressure is given by Eq.~6!, with n56 @11,16#.
For the same range, the static shear modulus was found to
obey @1#

G/~s/R!50.525w1/2. ~7!

Thus, this model predicts a discontinuity ofG at wc , its
value jumping from zero to 0.525Awc. The onset of the shear
modulus is thus very sharp atwc , and we shall demonstrate
that this elastic response is intimately associated with the
response of the droplet potential atj→0.

III. COMPRESSION BY TWO PLATES

The evaluation of the excess energy stored in an arbitrary
surface deformation of a compressed droplet is a difficult
problem. A simple three-dimensional case consists of a drop-
let of radiusR compressed between two parallel planes, each
located at a distanceh from the center of the droplet~cf. Fig.
2!. We shall measure compression by the dimensionless ratio
j defined as above. At small compressiondj, small circular
facets of radiusr f appear where the droplet touches each
plate. Naively, the resulting forcedF on each facet can be
estimated by assuming that the radius of the droplet, and
hence the Laplace pressure, remains unchanged. Therefore,
dF'(2s/R)dS, where dS is the surface of the flattened
facet. To lowest order in the deformation,

dS'2pR2dj, ~8!

so thatdF'4psRdj. Thus, to lowest order, the response of
a droplet compressed between two parallel plates is found to
be identical to the compression of a repulsive harmonic
spring of spring constant 4ps. However, this simple deriva-
tion leads to a wrong answer, as we now show.

Because of its azimuthal symmetry, we may express this
problem as a one-dimensional problem, that of finding the
solid of revolution of a constant volume with minimum sur-
face area. The free surface of this solid is given by a curve
r (z) rotated about thez axis. The mathematical aspects of
the present problem, such as stability and the existence of a
solution as a function of contact angles, have recently been
discussed in detail by various authors@17–20#.

Using the Euler-Lagrange formalism, we minimize the
total droplet surfaceA, which is given by

A52pr f
212E

2h

0

2prA11r z
2dz, ~9!

wherer z[dr/dz. The minimization is done under the con-
straint of constant volume:

4

3
pR352E

2h

0

pr 2dz, ~10!

which is introduced through the use of a Lagrange multiplier
l in a functionL,

L5
r f
2

h
12rA11r z

22lr 2 ~11!

to be minimized. SinceL5L(r ,r z) is independent ofz, one
can use the integrated form of the Euler-Lagrange equation
@21#

r z
]L
]r z

2L5C, ~12!

whereC is an integration constant. We reexpress the un-
known constantsl andC using the following boundary con-
ditions:

FIG. 1. The excess energy per facet of a two-dimensional drop-
let as a function of compression. The curves represent, from right to
left, the tessellating casesn 5 3, 4, and 6. The inset shows the same
data on a logarithmic scale.

FIG. 2. A droplet of initial radiusR being deformed by two
parallel plates located atz52h andz51h. The equator is located
at z50 and has a radiusr e . Both facets atz56h are circular and
have a radiusr f . The droplet shape is a cubic spline drawn for
visualization purposes only.
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r zur f5`, ~13a!

r zur e50, ~13b!

wherer e is the maximum value ofr located at the equator
~cf. Fig. 2!. The first condition sets the contact angle at the
facet, which should be zero if no long-range attractive forces
are present@1,13#. The second comes from symmetry and
macroscopic smoothness at the equator.

It will be convenient to use the following dimensionless
variables:

r5r /r e , ~14a!

r f5r f /r e , ~14b!

z5z/r e , ~14c!

and, including these changes, Eq.~12! reads

A11rz
25

r~12r f
2!

r22r f
2 . ~15!

Solving for z and integrating, we get

z52h1r eI ~r!, ~16!

wherer goes fromr f to 1, andI (r) is an integral that can be
solved at least numerically, and which is given by

I ~r!5E
r f

r x22r f
2

A~12x2!~x22r f
4!
dx. ~17!

Settingz50 in Eq. ~16! we obtain a relation betweenh/r e
andr f :

h5r eI 1 , ~18!

whereI 1[I (1). This allows us to re-express Eq.~16! as

z52h@12I ~r!/I 1#. ~19!

We note here that bothI (r) and I 1 are functions ofr f ,
which in turn is related toh through the volume constraint
Eq. ~10!. Using Eqs.~10! and ~18!, h can be related tor f
through the following nontrivial relation:

h5RI1S 2

3J1
D 1/3, ~20!

whereJ1 is another integral defined by

J15E
r f

1 x2~x22r f
2!

A~12x2!~x22r f
4!
dx. ~21!

At this point the problem is fully determined. Given the
size of the facetsr f , the plate separation 2h is determined by
Eq. ~20!, and the shape of the droplet by Eq.~19!. The total
droplet surface is obtained by combining Eqs.~9!, ~15!, and
~18!, to get

A5
2ph2

I 1
2 @r f

212~12r f
2!K1#, ~22!

whereK1 is yet another integral defined by

K15E
r f

1 x2

A~12x2!~x22r f
4!
dx. ~23!

The integralsI 1 , J1, andK1 are elliptic integrals which
we can solve numerically, after removing the divergence at
x51 by direct analytical integration. The solution of Eq.
~19!, for various values ofh, leads to the different droplet
shapes shown in Fig. 3.

It is convenient to define the~dimensionless! relative
droplet excess surface energy by

«[A/~4pR2!21. ~24!

Figure 4 shows the relative excess energy per contact as
derived from Eq.~22!. It is interesting to compare our solu-
tion to different estimates, which model the deformed drop-
lets in different ways. For example, we consider the relative
excess energy of a body of equal volume consisting of a
cylinder of radiusr f8 surrounded by a semicircle of revolu-
tion of radiush. This semicircular surface approximation has
a zero contact angle for all compressions and becomes exact
in the two displacement limitsj→0, andj→1. With a little
algebra, this approximation can be shown to be

«5~12j!2SQ1
p

4
A2Q112

3p2

32 D21, ~25!

where

3Q5
1

~12j!3
211

3p2

32
~26!

FIG. 3. Shape of a droplet compressed between two parallel
plates for different plate displacements:j 5 0.000, 0.035, 0.107,
0.199, 0.302, 0.411, 0.526, 0.647.
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has been used for simplicity. Given the scale of Fig. 4, it is
not possible to distinguish the results of this estimate from
the exact solution, and we thus show the difference as an
inset.

A second estimate which has been used in the case of
compression by multiple planes@5,13# consists in consider-
ing a truncated sphere having the same volume. Results from
this estimate are also shown in Fig. 4. The force required to
compress the plates is a better accuracy indicator, and forces
derived from each solution will be compared below.

The integralsI 1 , J1, andK1 can be solved analytically
whenr f 5 0, i.e., for the undeformed sphere. Let us consider
small compressions, and expand the integrals aboutr f 5 0.
For K1, for instance, we obtain

K1'E
r f

1 S x2

xA12x2
1

r f
4

2

x2

x3A12x2
D dx, ~27!

which becomes, after performing the integrals,

K1'12
r f
2

2
1

r f
4

2 F ln~2!2
1

4
2 ln~r f !G . ~28!

In this limit one finds, after expanding Eq.~22! in a similar
way,

«'24X2S ln~X!1
1

2D , ~29!

where

X[~r f /2!2 ~30!

has been introduced for simplicity. Using similar expansions
in Eq. ~20!, one obtains

j'22X ln~X!. ~31!

Due to this nontrivial relation, we cannot express« in terms
of j. It is possible, however, to combine Eqs.~29! and ~30!
to obtain an expression for the dimensionless forcef

f[
d«

dj
'4X. ~32!

Combining the last equations, we may reexpress the ex-
cess energy in terms off

«' 1
4 f

2@k2 ln~ f !#, ~33!

where the constantk52 ln(2)2(1/2). Morse and Witten@4#
obtained a similar result by considering, to lowest order, a
point perturbation of a sphere and then matching the solution
to a small facet subject to the unperturbed uniform Laplace
pressure. In order to test the range of validity of our expan-
sion, we solve Eq.~33! numerically to obtain«(j). This is
done by transforming Eq.~33! into a self-consistent integral
equation

f ~j!5S 4*0
j f ~x!dx

k2 ln@ f ~j!#
D 1/2, ~34!

from which «(j)5*0
j f (x)dx is obtained after a few tens of

iterations only. The results are shown by the dotted lines on
Figs. 4 and 5.

Thus, we showed that the response of a droplet to com-
pression is not harmonic, even to lowest order. It is not pos-
sible to obtain an expression for the potential as a function of
j in closed form, given the presence of elliptic integrals. It is
possible, however, to test phenomenological expressions
from our exact results. For this purpose, the divergence of
the excess energy ath→0 is not of particular interest given

FIG. 4. Relative excess energy per facet for a single droplet as a
function of the dimensionless displacementj. Curves are, from top
to bottom: the truncated sphere approximation~dot-dashed!, the ex-
act solution~solid!, and the potential predicted by Eq.~34! ~dotted!.
Data points (s) are results obtained from SE. The absolute differ-
enceD in « between the semicircular surface approximation and the
exact solution is shown as an inset.

FIG. 5. A comparison of thej dependence of the dimensionless
force ratio f /j for different solutions. Curves are, from top to bot-
tom: the truncated sphere approximation~dot-dashed!, the semicir-
cular surface approximation~dashed!, the exact solution~solid!, and
its lowest-order expansion~dotted!.
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the perspective of a droplet packing. We shall therefore con-
centrate on the droplet response to small compression.

It is instructive to compare the forces predicted by the
different estimates to the exact results. Figure 5 shows the
ratio f /j for the exact solution, its lowest-order expansion
@Eq. ~33!#, the semicircular surface model, and the truncated
sphere model. A harmonic potential would be represented by
a constant value in such a plot. Forj&0.001, the exact so-
lution sharply drops to zero as does its lowest-order expan-
sion. On the other hand, asj goes to zero, the semicircular
surface model goes to (2216/p2), showing that the poten-
tial becomes harmonic asj→0. Finally, the truncated sphere
model is found to be closer to a harmonic potential, having a
smaller relative variation inf /j. There are two essential
characteristics of the exact force. The first one is the anhar-
monic behavior of the force atj→0. This feature is respon-
sible for the logarithmic onset ofG at wc predicted for or-
dered emulsions@5#. The second essential characteristic is
that f /j increases as the displacement increases. These im-
portant features, we believe, are responsible for the charac-
teristic positive curvature ofG observed for disordered drop-
let packings.

An approximate functional form for the droplet potential
would be useful in providing estimates of the elastic proper-
ties of compressed emulsions. For this purpose, the increase
of f /j with the displacement can either be approximated by a
power lawja with a.2 or by the addition of higher-order
terms to a harmonic potential. The former is preferred how-
ever, both for its simplicity and because it vanishes as
j→0, similarly to the exact solution.

In view of investigating fitting functions, a logarithmic
plot of « in terms of@(R/h)321# is presented in Fig. 6. The
numerical solution of Eq.~33! can be performed with a pre-
cision larger than the one optimally possible when solving
directly for« @Eq. ~22!#. Therefore, the low-compression val-

ues of« shown on Fig. 6 were obtained using the lowest-
order expansion@Eq. ~34!#. There are two distinct behaviors
separated by a crossover section. By approximating the drop-
let by a compressed cylinder, it can easily be shown that
«;1/h ash→0. This asymptotic limit is represented by the
dotted line of slope 1/3 at high abscissa values. At low com-
pression, the data are relatively well described by a power
law of the formja or @(R/h)321#a

„ 5 @1/(12j)321#a,
cf. Eq. ~26!…. We found that the latter provides a better fit
over a wider range ofh. It also has the advantage of simpli-
fying to the form (w2wc)

a for space-filling polyhedra.
Moreover, the two forms are equivalent for smallj since
@(R/h)321#'3j. As we shall see in Sec. IV, a fitting form
will prove useful when characterizing the behavior of the
droplet for different configurations of compressing planes.

As can be seen by comparing the curves of Fig. 6 at low
compressions, a power law describes the data very well,
down to machine precision values at«'1028. The fitting
curve~dotted! has an exponenta52.1 and is obtained from
fitting the data over a range covering more than an order of
magnitude. The exact solution is contrasted with the other
estimates which show a harmonic behavior (a52) at small
j. At largerj, the power law overestimates the excess energy
but this occurs atj'0.2. Nevertheless, the range ofj over
which a power law describes the data very well is more than
two decades.

We now investigate the validity of the two power-law
functional forms we propose„i.e., ja and @1/(12j)321#a

…

for the exact solution of«. We are interested in small com-
pressions and therefore, the lowest-order expansion of«, Eq.
~33! is used. As seen from Fig. 4, this expansion is perfectly
valid for j,0.02. We first determine the effective exponent
of the fitting form ja by combining Eqs.~33! and ~32! to
obtain

j52 1
2 f ln~ f /4!. ~35!

This allows us to define an effective exponent~valid for very
small compression only!

d ln«

d lnj
5

j f

«
5

2 ln~ f /4!

ln~ f /4!11/2
, ~36!

characterizing the increase of the excess energy. The expo-
nent is obtained in terms off which can be numerically
converted toj using Eq.~34!. The exponent for the second
fitting form is obtained by a simple chain rule transforma-
tion. Figure 7 shows thej dependence of the effective expo-
nent for each of the two different fitting forms we propose
here. For both cases, points on the curve are bounded by
j,2%, since these results are derived from the lowest-order
expansion of the energy. In contrast to what is suggested by
Fig. 6, the exponent is not constant for very small compres-
sion, but slowly decreases, going to 2 only atj→0. This
notwithstanding, a power law with a fixed exponent provides
a good approximation for the droplet potential over the range
of values ofj typically encountered in compressed emul-
sions.

FIG. 6. Logarithmic plot of the relative excess energy versus the
displacement function@(R/h)321#. A simple power law describes
the data very well at low compression, as shown by the dotted line.
The low-compression fits a slope of 2.1 while the high-compression
data joins the asymptotic limit of slope 1/3. Curves are, from top to
bottom: truncated sphere approximation~dot-dashed!, semicircular
surface approximation~dashed!, and exact~solid!.
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IV. NUMERICAL RESULTS

Except for special cases, as shown in the preceding sec-
tion, the excess surface energy of a deformed droplet can
only be determined numerically. Given the Surface Evolver
~SE! software written by Brakke@9#, it is relatively easy to
calculate the shape of a single droplet with minimum surface
area~energy! under the constraint of fixed droplet volume
and as a function of confinement. We have obtained results
for various confining polyhedral cells, some of which are
Wigner-Seitz cells associated with standard packing struc-
tures. The surprising result of this study is that for a consid-
erable range of compressions, the energy is well described by
a power law,where the exponent depends on the number of
faces of the confining cell.

The starting state is a spherical droplet which is composed
of either 3074 or 12 290 vertices. Most of the results pre-
sented here are for the latter case. The initial droplet is con-
fined inside a polyhedral cell having between four and 20
faces. In particular, we used a rhombic dodecahedron@face-
centered-cubic~fcc!#, a truncated octahedron@body-centered-
cubic ~bcc!#, and a simple cube~sc!, all of which are space-
filling polyhedra. In addition, we compressed the droplet
within a tetrahedron, an octahedron, a pentagon dodecahe-
dron, and an icosahedron. Simpler structures were used as
well, namely, compression between a pair of parallel plates
to compare to the results obtained in Sec. III, and between
two perpendicular pairs of parallel plates. Results for two
parallel plates are shown as the open circles in Fig. 4. As
expected, they are in agreement with the analytic calcula-
tions down to very low compression where the change in
surface area is comparable to the numerical uncertainty in
SE. In all cases, the compressions leave the center of mass
unchanged so that a distanceh from the center can be de-
fined.

Figure 8 shows the calculated dependence of the relative
excess energy@Eq. ~24!# per facet,«/n, on j @Eq. ~2!# for
different types of confinement cells.n represents the number

of compressing planes which is equivalent to the coordina-
tion number for space-filling cells. Using a fitting function of
the form

«/n5CF SRh D 321Ga

, ~37!

we find that both the coefficient,C, and the exponent,a,
depend onn, as indicated in Table I. As mentioned before,
Eq. ~37! is equivalent toC8(w2wc)

a when the droplet is
confined by space-filling polyhedra. As in the case of two
parallel plates, this form fits the data better over a wider
range thanja. The data selected for the fit lie in thej inter-
val 2–6%. This range was chosen to avoid errors associated
with low values ofj. On the other hand, the upper value
fixes the range we are interested in. Indeed, since
j512(wc /w)

1/3, a face-centered-cubic structure~fcc,
wc5pA2/6) for instance, hasj'9.5% in the dry foam limit
w51.

FIG. 7. The effective exponent characterizing the increase of the
relative excess surface energyd ln«/d lnx, where x is either the
displacementj ~solid!, or a function of it@1/(12j)321# ~dashed!.
In both cases, the maximum value ofj is 2%.

FIG. 8. Relative excess surface energy per facet@Eq. ~24!#, for a
single droplet as a function of the plate displacement
j5(R2h)/R. Curves are, from top to bottom,n 5 12 ~fcc!, 8 ~low
compression bcc!, 6 ~sc!, 4 ~tetrahedron!, 2 ~2 plates!. All curves
are best fit to power law Eq.~37!. Note that for clarity, not all cases
of Table I are shown here.

TABLE I. Values of the parametersC anda of the power-law
fit to the relative excess energy@Eq. ~37!#. The various configura-
tions are ordered according to their coordination numbern. Errors
are in the last digit.

configuration n C(1023) a

pair of i plates 2 7 2.1
two' pairs of i plates 4 12 2.1
tetrahedron 4 14 2.1
cube~sc! 6 21 2.2
octahedron~low-w bcc! 8 27 2.3
rhombic dodecahedron~fcc! 12 55 2.5
pentagonal dodecahedron 12 54 2.5
icosahedron 20 69 2.6
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Our results explicitly show that the response of a droplet
to compression is a nonlocal phenomenon:the response de-
pends on the number of planes used to compress the droplet.
In addition, one might expect it to depend on the relative
positions of these planes, but it will be shown below that this
effect is not very important. It is worth noting that since
a(n).2 for all cases, this response is weaker than a har-
monic interaction: the response is equivalent to having the
spring constant go to zero as the distortion vanishes. We also
note that a power law with an exponent which increases as
the number of compressing planes increases is unphysical for
small compressions as the energy curves for differentn
would cross. Thus, although the fits shown in Fig. 8 appear
convincing, the functional form should be viewed uniquely
as a convenient way to mimic the response of a droplet.

In view of investigating the dependence of the relative
positions of the compressing planes on the droplet, we ob-
tained data for different configurations having the samen.
By comparing, say, the results of the fcc structure to those of
the pentagon dodecahedron, we see that the influence of the
configuration on the fitting parameters is marginal compared
to that ofn. It therefore seems reasonable to conclude that,
provided that the different facets of the droplet are not too
close, the potential is only a function of the coordination
numbern. This information is valuable for modeling the ex-
cess energy of a droplet in a disordered emulsion@14#. A
second point of interest is the saturation of the exponenta
above n'12. Although the number of neighbors nearly
doubles from a rhombic dodecahedron to an icosahedron, the
exponent barely changes.

In a similar way, by comparing the excess energy ob-
tained by compressing a droplet in an octahedron to that
obtained for the truncated octahedron, one can determine the
importance of the second neighbors in the base-centered-
cubic~bcc! lattice. We find that second neighbors do not play
a role forw&0.90 (j'6.3%). Forw50.93, the excess en-
ergy differences between the two is about 5%. Thus over
most of the range of interest, only the eight nearest neighbors
are relevant.

V. OPTIMAL PACKINGS FOR FOAM

Our numerical results also allow us to compare the energy
of the various packings as a function of volume fraction. For
a wide range of volume fractions, the lowest-energy state of
monodisperse emulsions is believed to be a packing of drop-
lets in an fcc structure. We neglect temperature effects in the
following argument. Forw.wm'0.545, i.e., the melting
concentration of monodisperse hard spheres@22#, up to
w,wc5pA2/6.0.7405, i.e., close packing concentration,
the droplets remain spherical in an fcc structure as they can
pack without touching. Forw.wc , the lowest-energy state
remains fcc until it changes to a new structure atw*,1.
That such a crossover must exist is clear from previous work
on dry foams.

In the limit w'1, an emulsion becomes a biliquid foam
which is structurally analogous to a dry foam. The lowest-
energy state of the latter has long been the object of study.
For nearly one hundred years, it was thought that the Kelvin
@23# structure based on a bcc packing of identical orthic tet-
rakaidecadedra gave an optimal space filling of cells of the

same volume. The mechanical equilibrium requirements of
the foam structure are contained in Plateau’s rules@10#. To
satisfy these rules, Kelvin showed that the faces of each cell
are slightly distorted@23#: the six quadrilateral surfaces re-
main planar but curve their edges while the eight hexagonal
surfaces, in addition to sharing the same curved edges, be-
come nonplanar surfaces of zero mean curvature. The reduc-
tion in surface area from the undistorted Wigner-Seitz cell is
approximately 0.16%@24,25#. By using SE, Weaire and
Phelan@26# recently showed the existence of a packing hav-
ing an energy lower than the Kelvin structure. This space-
filling packing consists of six 14-sided polyhedra and two
12-sided polyhedra, all of equal volume, packed in a simple
cubic cell. This structure, which is based on the cubic clath-
rate structure, has a surface energy approximately 0.3% less
than that of Kelvin. For comparison, the fcc structure has an
energy 0.7% higher than the Kelvin structure@26#.

Since we have studied only a single droplet in a Wigner-
Seitz cell, we cannot address the stability of the Kelvin struc-
ture versus that of Weaire-Phelan forw,1. However, we
can study the crossover from the fcc packing to the bcc
Kelvin-like packing asw increases. In Fig. 9, we plot the
~scaled! energy densityU, defined by

U5E/V53w«~s/R! ~38!

as a function ofw for a droplet in bcc and fcc structures.
Here,E is the excess surface energyE5s(A24pR2). As
expected, the energy density of the fcc structure is the lowest
over a wide range ofw. But atw*50.932(1), weobserve a
crossover to the bcc structure. This result is in agreement
with a similar prediction by Kraynik@27#. Note that this
crossover value is obtained strictly from surface energy con-
siderations and may be superseded by other stability criteria.
Moreover, our calculation neglects some degrees of freedom
since it strictly involves compressing a droplet inside a poly-
hedral cell. This is more restrictive than compressing many

FIG. 9. The scaled excess energy density vs the volume fraction
as extracted from a droplet in a bcc (h) and fcc (d) lattice. We
find a crossover from fcc to bcc atw*50.932(1).
wc5pA3/8.0.6802 for bcc andpA2/6.0.7405 for fcc.
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droplets caged by their neighbors, and thus we are in fact
obtaining an upper bound on the energy. However, since the
energy of a drop in the shape of a truncated octahedron is
only 0.16% higher than the orthic tetrakaidecadedra of the
Kelvin structure in the dry foam limit, the corrections to the
crossover value resulting from the surface curvature of the
films between the droplets should be small. Note that the
crossover point is just above the volume fraction where sec-
ond neighbors begin to play a role in the energy of a com-
pressed droplet in the bcc phase. Thus, while the six second
neighbors contribute to increasing the deformation of a drop-
let and thereby the surface area, the overall energy of the bcc
structure is still lower than that of the fcc structure for
w.0.932. As we shall see in Sec. VI, second neighbors in
the bcc structure are required for stability under shear defor-
mation.

The little difference in energy shown in Fig. 9 is not spe-
cific to bcc and fcc pairs. In fact, it is interesting to compare
the energy per droplet obtained for the regular pentagon
dodecahedron~rpd! to those obtained for the bcc and fcc
lattices. Since the rpd is not a space-filling object,w repre-
sents the ratio of droplet-to-cell volume for this case. If one
compares the energy per droplet as a function of the volume
ratio, one finds that the results for the rpd are almost indis-
tinguishable from that of a truncated octahedron, i.e., the bcc
unit cell. In particular, results for the rpd are lower than that
for fcc at highw. This suggests that at high volume fractions,
it may be favorable for a compressed monodisperse emulsion
to generate short-range icosahedral order such as it exists in
metallic glasses. This implies that as an emulsion is com-
pressed, it is likely to undergo a glass transition reminiscent
of that occurring in metallic glasses. Indeed, it is found to be
very difficult to obtain an ordered monodisperse emulsion
experimentally, indicative of the deep energy minimum of an
amorphous state. At low volume fraction however, fcc
should be more stable and thus other factors~e.g., residual
polydispersity! must be responsible for the difficulty of ob-
taining monodisperse ordered emulsions.

VI. RESPONSE TO SHEAR

We now turn to the response of a compressed droplet to
an impressed shear strain. Since we are considering a single
droplet, the scope of our method is limited to ordered lat-
tices. All the space-filling confinement cells investigated
here are related to the cubic point group and consequently,
the associated elastic constant tensor is composed of three
independent quantities. It is not possible for us to determine
these constants individually.

A useful method for applying a shear strain in the pres-
ence of periodic boundary conditions is to use an isochoric
uniaxial compressional-extensional strain. The effective
shear modulus can then be extracted from the resulting
change in surface energy. The isochoric uniaxial strain con-
sists in an extension of the Wigner-Seitz cell ofl511e in
the, say, z direction, associated with a compression of
l2(1/2) in the perpendicular plane. In principle, different ori-
entations of the Wigner-Seitz cell with respect to the refer-
encez axis would lead to effective measures of the modulus
resulting from different combinations of the elastic con-
stants. However, considerations of the alignment of the fac-

ets through periodic boundary conditions put restrictions on
the possible orientations of the strains. Or, said differently,
some orientations of the uniaxial strain involve forces that
are not normal to the faces of the Wigner-Seitz cell, and it
results that some facets do not lie on the cell boundary@5#.

Here, the chosen orientation is along any of the three
natural directions of a unit cell. For this particular choice, the
strain tensor is written@28#

gmn5
1
2 dmn~lm

2 21!, ~39!

where dmn is the Kronecker d, l15l25l2(1/2), and
l35l511e. e may be thought of as the magnitude of the
small linear strain. The energy densityU of the structure is
given by

U5 1
2gmnEmnprgpr , ~40!

where we use the summation convention.E is a fourth-order
tensor which can be displayed as a 636 coefficient matrix
using Voigt notation@5,29#. When a small isochoric uniaxial
strain is applied, the energy density is found to vary as

U5 3
2Ge2, ~41!

where the effective shear modulusG is the combination of
the elastic constants (C112C12)/2. Our definition ofG re-
duces consistently to the corresponding Lame´ constant when
considering an isotropic material.

Figure 10 shows a typical result for the variation of sur-
face area as a function of shear strain for an fcc lattice at
different volume fractions. The strain is measured as
l212/l23 which is equivalent to 3e2 for small strains@31#.
The slope of each curve isG/2.

In Fig. 11, the shear modulus is shown for the sc and fcc
lattices as a function of volume fraction. These results com-
pare well with the ones obtained by Buzza and Cates@5#

FIG. 10. Typical calculated excess energy density of a droplet
compressed in an fcc lattice as a function of shear strain. The strain
is measured byl212/l23'3e2 so that the slopes are half the
values of shear moduli@31#. Curves are for, from top to bottom,
w 5 0.787, 0.763, 0.746.
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using Morse and Witten’s potential@4#. As we already men-
tioned, these authors found a shear modulus that rises con-
tinuously from zero atwc , but that in contrast to the quasi-
linear onset observed experimentally for disordered
monodisperse emulsions, the obtainedG exhibits a logarith-
mically divergent first derivative at the onset. Similar to what
they found for a sc lattice, the shear modulus of the fcc
structure shows a steep but continuous rise from zero~rather
than a jump! at wc .

The isochoric uniaxial strain is peculiar in that with
l52(1/3), it changes the metric tensor in such way to trans-
form a bcc lattice into an fcc lattice with the same density
@30#. The net energy required for this transformation will
depend on the volume fraction as we have seen in the previ-
ous section when comparing the energy of both lattices. For
w.wc and up to somew8,w* , the bcc structure was found
to be unstable (G,0) to an applied uniaxial strain. The ex-
istence ofw8 derives from the stability of the bcc lattice over
the fcc lattice forw.w* . Second neighbors are responsible
for stabilizing the structure against shear strain and it is not
surprising to find thatw8*0.90, the point where second
neighbors start touching the droplet. Our best estimate for
w8, i.e., the volume fraction above which a bcc lattice has a
positive shear modulus for an isochoric uniaxial strain, is
0.903~5!, in agreement with estimates found in the literature
@32#.

VII. DISCUSSION AND CONCLUSION

We have shown that the droplet response to small com-
pressions in three dimensions is not harmonic and that it
depends on the number of neighbors. For droplets com-
pressed between two parallel plates, the surface profile can
be solved analytically for small deformations and integrated
numerically for arbitrary deformations. However, for other
geometries, the deformation can only be determined numeri-
cally. Using the Surface Evolver software@9#, we have de-
termined the change in surface area of droplets compressed
in a variety of confining polyhedra. Our results strongly sug-
gest that in three dimensions, though not in two, the response
is nonlocal. The data fit very well with a nonharmonic scal-
ing form in which the parameters of the fit depend almost
exclusively on the coordination number. This feature has
been used elsewhere@14# to build a pairwise interdroplet

potential in order to investigate the elastic response of disor-
dered monodisperse emulsions.

The response to shear was also investigated for ordered
lattices and it was found that similar to previous studies@5#,
the volume-fraction dependence of the shear modulus shows
a rather sharp increase at the onset of droplet touchingwc .
Although the anharmonicity of the potential certainly plays a
role in the linear onset ofG for disordered emulsions, it was
shown here that it is not sufficient. The experimental results
currently available@6,8# are for disordered emulsions only.
Ordered lattices are easier to study theoretically but the ef-
fects of disorder seem to be too important to permit compari-
son with experiment. We have shown elsewhere@14# that
both anharmonicity and disorder are required to reproduce
the experimental results.
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