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Deformation of small compressed droplets
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We investigate the elastic properties of small droplets under compression. The compression of a bubble by
two parallel plates is solved exactly and it is shown that a lowest-order expansion of the solution reduces to a
form similar to that obtained by Morse and WittHBurophys. Lett22, 549(1993]. Other systems are studied
numerically and results for configurations involving between 2 and 20 compressing planes are presented. It is
found that the response to compression depends on the number of planes. The shear modulus is also calculated
for common lattices and the stability crossover between fcc and bcc is disc{84663-651X96)09711-5

PACS numbds): 82.70.Kj, 81.40.Jj, 62.20.Dc

[. INTRODUCTION ered to have a fixed volume. The effect of gravity may be
nullified by density matching of the oil and water, but in any
Emulsions consist of a mixture of two immiscible fluids, case would be tiny because of the large surface tension and
one of which, generally an oil, is dispersed as small dropletsmall droplet sizetypically of a um) of the experimental
in the continuous phase of the other fluid, generally watersystems.
The interfaces are stabilized by a surfactant, preventing coa- When the droplets are compressed just beyond the point
lescence. Emulsions are materials with quite unusual propethey start to deform, i.e.p=¢., they form small facets
ties: despite being comprised solely of fluids, they becomeeparated by thin surfactant-water-surfactant films. Each of
elastic solids when the droplets are compressed to a larghe facets created on the droplet surface has the effect of
enough volume fractionp by extracting the continuous locally decreasing the droplet surface, but volume conserva-
phase by the application of an osmotic presditeThe ori-  tion makes the dropleglobally increase its surface, and thus
gin of the elasticity is the interfacial energy of the droplets.its energy. Due to such nonlocal effects, the determination of
At low volume fractions, the surface tensienensures that the droplet response to compression requires that it be con-
the droplets are spherical in shape. However, at highé¢he  sidered as a whole. Consequently, a complete analytic solu-
packing constraints force the droplets to deform, thus storingion is limited to a few simple cases, one of which is a drop
energy. Consequently, it is a fundamental issue to determinsgueezed between two parallel plates, to be presented in Sec.
the increase of the surface area of a droplet resulting from anl. The response to shear is still more difficult, but fortu-
arbitrary deformation. nately, numerical tools capable of handling such problems
It is generally believed that the application of a shearhave recently become availadie|.
strain to a compressed emulsion causes the droplets to fur- Upon more compression, droplets gradually take the
ther deform, thereby storing more eneifdy-5]. According  shape of a rounded polyhedron. At this point, the water is
to this picture, the scale of both the osmotic pressure, and theontained within the connected network of voids left be-
elastic shear modulus is set by the Laplace pressure of the tween the oil droplets. This network is made of thin veins,
droplets (2r/R), whereR is the radius of an undeformed along which the facets meet, and which connect larger re-
droplet. Recent experiment8] on the elastic properties of gions located at the corners of the polyhedra.¢As 1, i.e.,
compressed monodisperse emulsions of silicone-oil in watein the so-called dry foam limit, mechanical equilibrium im-
confirm the role of the Laplace pressure: the experimentaboses constraints on these regions which were first discussed
values ofG andll for different droplet sizes, when scaled by by Plateau[10]. In particular, exactly three films meet at
(a/R), collapse on a single cunfé]. equal angle$120°) along the veins which become the edges
Compression modifies the elastic properties of a disoreof the polyhedra. Additionally, the corner regions reduce to a
dered emulsion, changing the response from liquidlike to solpoint at which four edges meet at equal tetrahedral angles.
idlike. The onset of solidlike behavior is gradual; béthand  These rules do not apply until most of the continuous phase
G increase smoothly from zero as the system is compressdths been extracted.
aboveg.~0.64[6], the volume fraction at which disordered  The elasticity of emulsions has been the object of numer-
monodisperse droplets are first deform&d. For polydis- ous investigations over the last decade. The first theoretical
perse emulsionsy, is larger[8], reflecting more efficient attempts[1,2] were for ordered lattices in two dimensions,
packing. Two separate elastic responses of the droplets avéhich we shall briefly treat in Sec. Il, mainly in order to
therefore of interest: to direct compression and to shear. contrast them with three-dimension&D) systems. It should
The increase of the surface area of a droplet under conbe noted that two-dimensionéD) systems are important in
pression comes from the relatively low cost of deformationtheir own right, both theoretically and experimentally. For
compared to the compressibility of the internal fluid. Thus, itexample, the effects of polydispersity and disorder are
is very reasonable to assume that the droplets are composkdgely studied in two dimensiori8,11,13.
of an incompressible fluid, and may be consequently consid- For real (three-dimensionalbubbles, the only analytical
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expression4] for the behavior of a droplet surface under polygon is now shrunk uniformly, the droplet will distort,
compression involves the application of an infinitesimaland its new minimum-perimeter shape will consist of small
force at a single point. A simplified approach consists infacets joined by circular arcs. As increases above,, the
assuming that each droplet becomes a truncated sphere undemgth of the flat portions increases and the radius of curva-
compressionf13]. Using each of these approaches, the sheature of the arcs decreases, reflecting increased droplet pres-
modulus of a simple cubi¢so) lattice has been derivd®|: sure. Ato=1, the radius of curvature of the arcs becomes
the truncated sphere approximation yields a shear moduluzero (infinite pressurg and the bubble takes on the shape of
that exhibits a discontinuous onsetg@t, whereas the infini- the polygonal cell.
tesimal force approach predicts a shear modulus that rises The interfacial energy of the droplets is the product of
continuously from zero at the onset, with a logarithmically their line tensions and the perimeter lengthi. It is conve-
divergent derivative. This is in contrast with the smooth qua-ient to measure the excess energy by the following dimen-
silinear increase o6 at ¢, found experimentally for disor- sionless quantity:
dered emulsions.

The relative importance of the disorder of the emulsions, / 1 1
its polydispersity, and the response of the droplets them- ETo24R T @
selves is the object of current reseafdd]. This paper is
concerned with the last: we present the results of an investwhere R is the radius of the undeformed circular droplet.
gation of the response of an individual droplet to deforma-Similarly, the degree of compression will be measured by the
tion. In Sec. Il we present results for the 2D case. Section IIfollowing dimensionless displacement:
derives exact results for the compression of a droplet by two
parallel plates. In the limit of infinitesimal compression, our — R;h )
results are compared with Morse and Witten’s expression R’
[4]. For a large range of compressions, we show that the
energy has an anharmonic power-law response to comprewhereh is the perpendicular distance from the facets to the
sion. In Sec. IV, we present numerical results for the com<center of the droplet is simply related to the volume frac-
pression of a droplet in several local environments usingion throughé=1—e./¢. For any regular polygonal cell,
Brakke’s Surface EvolvefSE) software[9]. We again dem- & can be shown to be, fap= ¢,
onstrate that the energy of the squeezed droplet is anhar-
monic, with the power depending on the number of facets. 1 [(l—(p)(l—(pc)
Section V describes the results obtained for a selection of €= N

- et . Vooe PPc
space-filling structures at the dry foam limit. Section VI con-
tains numerical calculations of the droplet response to &gy, slightly greater tharp, , we may expand the previous
séhearvtlllleformatlon. We discuss our results and conclude igxpression in terms ofd— @), and get
ec. VILI.

1/2

1. 3

SN C)

e~|az——|(e—0 )2~(—
Il. RESPONSE IN TWO DIMENSIONS (8<Pc(l— %)) ¢ 2(1-¢¢)

Two-dimensional systems have characteristics not foundherefore, for small compression, the energy is harmonic,
in three dimensions. For example, monodisperse arrays eind the prefactor depends on the number of faces of the
disks order easily15] in an hexagonal array of surface frac- polygon throughe.. This is shown in Fig. 1 where the ex-
tion p.=7/(2\/3)~0.9069. The elastic properties of two- cess energy per facet is plotted for the tessellating cases
dimensional ordered systems have been discussed extem-= 3, 4, and 6. The end of each curve corresponds to
sively by Princer{1,16]. The response to deformation is also ¢— 1 for each lattice. The logarithmic inset shows the wide
simpler in two dimensions. A minimum free surfa@free  range over which harmonicity holds as well as theepen-
curve in the present casis characterized by a uniform pres- dence of the prefactor expressed by the different intercepts.
sure or, equivalently by a constant mean curvature. In two In two dimensions, the scaled osmotic pressure can be
dimensions, the surface is parametrized by only one radius afbtained from
curvature and the minimum free surface is therefore always
an arc of a circle.

Let us consider the deformation of a two-dimensional
droplet of constant area confined inside a regular polygon of
n sides. Only forn= 3, 4, and 6 can such polygons be and we find, using Eq(3),
tessellated, but we shall consider generain particular, to
contrast the two- and three-dimensional results. The ratio of e\ [ 1=\ Y2
droplet area to polygon area is denoted ¢gyOnly for the /(olR)=| 1-¢ -1
tessellating cases wilp represent the surface covering frac-
tion of the corresponding lattice. In the following, we assumeThis last expression, which depends orthrough ¢, is
that the droplet does not adhere to the surface so that thealid for all tessellations in two dimensions. Fee ¢, 11
contact angles are zero. A&t.= (w/n)cot(s/n), the circular  can be shown to increase linearly witk € ¢.).
droplet is undeformed and touches the polygon at exactly  In the model proposed by Princdi,16|, droplets are
points, being the midpoints of the polygon’'s edges. If themonodisperse cylindrical objects packed in a hexagonal ar-

d
H/(a/R)=2¢2£, (5)

(6)

C
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FIG. 1. The excess energy per facet of a two-dimensional drop-
let as a function of compression. The curves represent, from rightto FIG. 2. A droplet of initial radiusR being deformed by two
left, the tessellating cases= 3, 4, and 6. The inset shows the same parallel plates located a&= —h andz= +h. The equator is located
data on a logarithmic scale. atz=0 and has a radius,. Both facets ar= *h are circular and
have a radiug;. The droplet shape is a cubic spline drawn for
ray (n=6). In the dry foam limit, this configuration satisfies Visualization purposes only.
Plateau’s rules for packing in two dimensions. kor ¢,

the osmotic pressure is given by H&), with n=6 [11,16]. Because of its azimuthal symmetry, we may express this
For the same range, the static shear modulus was found Rfoblem as a one-dimensional problem, that of finding the
obey[1] solid of revolution of a constant volume with minimum sur-
face area. The free surface of this solid is given by a curve
G/(0/R)=0.52512, (7)  '(2) rotated about the axis. The mathematical aspects of

the present problem, such as stability and the existence of a
solution as a function of contact angles, have recently been
discussed in detail by various auth¢is’—20.

Using the Euler-Lagrange formalism, we minimize the
éotal droplet surfacé\, which is given by

0
A=27-rrf2+2f7h27rr\/1+r§dz, 9

Thus, this model predicts a discontinuity & at ¢, its
value jumping from zero to 0.525p.. The onset of the shear
modulus is thus very sharp at., and we shall demonstrate
that this elastic response is intimately associated with th
response of the droplet potential &t 0.

Ill. COMPRESSION BY TWO PLATES

. . .. wherer,=dr/dz. The minimization is done under the con-
The evaluation of the excess energy stored in an arb'trar¥traint of constant volume:

surface deformation of a compressed droplet is a difficult
problem. A simple three-dimensional case consists of a drop- 4 0
f mrdz,
—h

let of radiusR compressed between two parallel planes, each S TR3=2 (10

located at a distande from the center of the droplétf. Fig. 8

2). W.e shall measure compression by the d|menS|aness raltiRhich is introduced through the use of a Lagrange multiplier
¢ defined as above. At small compressib§y small circular X in a functionZ.

facets of radiug; appear where the droplet touches each ’

plate. Naively, the resulting forcéF on each facet can be rz

estimated by assuming that the radius of the droplet, and £=F+2r 1+r2—xr? 11
hence the Laplace pressure, remains unchanged. Therefore,

dF~(20/R)dS, wheredS is the surface of the flattened {5 pe minimized. Sinc&=£(r,r,) is independent of, one

facet. To lowest order in the deformation, can use the integrated form of the Euler-Lagrange equation
[21]
dS~27R%d¢, tS)
L
so thatd F~4moRdé. Thus, to lowest order, the response of rzm —£=C, (12)
a droplet compressed between two parallel plates is found to
be identical to the compression of a repulsive harmoniavhere C is an integration constant. We reexpress the un-
spring of spring constant#o. However, this simple deriva- known constantad andC using the following boundary con-
tion leads to a wrong answer, as we now show. ditions:
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I’Z|rf=°0, (13@ 1.5 T T T T
rz|re:0- (13b) 1.0

wherer, is the maximum value of located at the equator

05

—

(cf. Fig. 2. The first condition sets the contact angle at the
facet, which should be zero if no long-range attractive forces

are presenfl,13]. The second comes from symmetry and § 0.0 e -
macroscopic smoothness at the equator.
It will be convenient to use the following dimensionless 05+ ]
variables: ’ N 7
p=rirg, (14a -10 f .
pf=rf/re, (14b) -15 L ! L )
-5 -1.0 -05 0.0 0.5 1.0 1.5
(=12, (140 /R
and, including these changes, Ej2) reads FIG. 3. Shape of a droplet compressed between two parallel
1 2 plates for different plate displacements:= 0.000, 0.035, 0.107,
\/—z_P( —pi) 0.199, 0.302, 0.411, 0.526, 0.647.
1+pi=—5—>. (15
P~ Py
. . . 2mh? 2 2
Solving forz and integrating, we get A= I—z[pf +2(1-p7)K4], (22
1
z=—h+rel(p), (16)
whereK is yet another integral defined by
wherep goes fromp; to 1, andl (p) is an integral that can be
solved at least numerically, and which is given by 1 X2
K= f dx. (23
pN(1=x2)(x*= pf)

2_ 2
X"~ py

p
'(p)_Lf«l—xZ)(xz—p?)dx' 4

Settingz=0 in Eq. (16) we obtain a relation betweeam'r
andps :

h=|’e|1, (18)
wherel;=1(1). This allows us to re-express E{.6) as
z=—h[1-1(p)/l4].

We note here that both(p) andl, are functions ofp;,
which in turn is related td through the volume constraint
Eq. (10). Using EQgs.(10) and (18), h can be related te;
through the following nontrivial relation:

19

2 1/3
h:Rll(g,_Jl) , (20
whereJ, is another integral defined by
1 x3(x2—p})
J :f dx (21
S L3063 p))

At this point the problem is fully determined. Given the
size of the facets;, the plate separationhZis determined by
Eq. (20), and the shape of the droplet by E9). The total
droplet surface is obtained by combining E¢(®, (15), and
(18), to get

The integrald ;, J;, andK;, are elliptic integrals which
we can solve numerically, after removing the divergence at
x=1 by direct analytical integration. The solution of Eq.
(19), for various values oh, leads to the different droplet
shapes shown in Fig. 3.

It is convenient to define thédimensionless relative
droplet excess surface energy by

e=Al(47R%) — 1. (24)
Figure 4 shows the relative excess energy per contact as
derived from Eq.22). It is interesting to compare our solu-
tion to different estimates, which model the deformed drop-
lets in different ways. For example, we consider the relative
excess energy of a body of equal volume consisting of a
cylinder of radiusr; surrounded by a semicircle of revolu-
tion of radiush. This semicircular surface approximation has
a zero contact angle for all compressions and becomes exact
in the two displacement limit§— 0, andé— 1. With a little
algebra, this approximation can be shown to be

2
e=(1—¢)? Q+%®+1—3312 -1, (29

where

1 372

:—(1_5)3—14-5 (26)



5440 MARTIN-D. LACASSE, GARY S. GREST, AND DOV LEVINE 54

0.40 12 F T T T I____A,._._.—--
0‘35 N FE
1.0 - |
0.30 |
0.8 r |
0.25 |
£0.20 - L
: | 04 F.--
0.10 |
0.2
0.05 |
0.00 ¢ . " I I I I
00 01 02 03 04 05 06 07 08 0.00 0.05 0.10 & 0.15 0.20 0.25
3

FIG. 5. A comparison of thé dependence of the dimensionless
ce ratiof/¢ for different solutions. Curves are, from top to bot-
tom: the truncated sphere approximatigiot-dashey] the semicir-
cular surface approximatiaidasheg, the exact solutiogsolid), and

its lowest-order expansiofotted.

FIG. 4. Relative excess energy per facet for a single droplet as %r
function of the dimensionless displaceméntCurves are, from top
to bottom: the truncated sphere approximatidat-dashey the ex-
act solution(solid), and the potential predicted by E@4) (dotted.
Data points ) are results obtained from SE. The absolute differ-
enceA in ¢ between the semicircular surface approximation and the
exact solution is shown as an inset. &~ —2X In(X). (32)

has been used for simplicity. Given the scale of Fig. 4, it isDue to this nontrivial relation, we cannot express terms
not possible to distinguish the results of this estimate fronof &. It is possible, however, to combine Eq29) and (30)
the exact solution, and we thus show the difference as atp obtain an expression for the dimensionless fdrce
inset.

A second estimate which has been used in the case of _de
compression by multiple plang$§,13] consists in consider- = d_§%
ing a truncated sphere having the same volume. Results from
this estimate are also shown in Fig. 4. The force required to Combining the last equations, we may reexpress the ex-
compress the plates is a better accuracy indicator, and forcegss energy in terms df
derived from each solution will be compared below.

The integralsl,, J;, andK; can be solved analytically e~ k—In(f)], (33
whenp; = 0, i.e., for the undeformed sphere. Let us consider

small comp'ressions, and expand the integrals apput 0. \hore the constark=2 In(2)—(1/2). Morse and Wittef4]
For Ky, for instance, we obtain obtained a similar result by considering, to lowest order, a
1 2 4 W2 point perturbation of a sphere and then matching the solution
Kl“f + Pt dx (277 toa small facet subject to the unperturbed uniform Laplace
p\xV1-x2 2 x3J1-x3] pressure. In order to test the range of validity of our expan-

sion, we solve Eq(33) numerically to obtaire(¢). This is

4X. (32

which becomes, after performing the integrals, done by transforming Eq33) into a self-consistent integral
5 4 equation
Kime1— 20 P )= 2 Zincon) 28)
1 22 g P 475t (x)dx | V2
f(f):<k—ln[f(§>]) ' 39
In this limit one finds, after expanding E2) in a similar
way, from which s(g)zfgf(x)dx is obtained after a few tens of
1 iterations only. The results are shown by the dotted lines on
s~—4x2( In(X)+ 5] (29 Figs. 4 and 5.
Thus, we showed that the response of a droplet to com-
where pression is not harmonic, even to lowest order. It is not pos-

sible to obtain an expression for the potential as a function of
X=(p;/2)? (30) £ in closed form, given the presence of elliptic integrals. It is
possible, however, to test phenomenological expressions
has been introduced for simplicity. Using similar expansiondrom our exact results. For this purpose, the divergence of
in Eq. (20), one obtains the excess energy &t—0 is not of particular interest given
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2 —— T ues ofe shown on Fig. 6 were obtained using the lowest-
order expansiofiEq. (34)]. There are two distinct behaviors
separated by a crossover section. By approximating the drop-
. let by a compressed cylinder, it can easily be shown that
e~1/h ash—0. This asymptotic limit is represented by the
dotted line of slope 1/3 at high abscissa values. At low com-
21 V4 A pression, the data are relatively well described by a power
law of the formé&® or [(R/h)3—1]¢ ( = [1/(1-&)3—1]%,
cf. Eq. (26)). We found that the latter provides a better fit
§4 over a wider range dfi. It also has the advantage of simpli-
fying to the form (@— )¢ for space-filling polyhedra.
Moreover, the two forms are equivalent for sméllsince
[(R/h)3—1]~3¢. As we shall see in Sec. IV, a fitting form
g will prove useful when characterizing the behavior of the
8 e droplet for different configurations of compressing planes.
3 2 1 0 1 2 3 4 5 6 As can be seen by comparing the curves of Fig. 6 at low
loglo[(R/h)3- 1] compressions, a power law describes the data very well,
down to machine precision values at=10"8. The fitting

FIG. 6. Logarithmic plot of the relative excess energy versus the]E?“.“’e (dotted has an exponent= 2'.1 and is obtained from
displacement functiof(R/h)3—1]. A simple power law describes itting _the data over a range covering more thar.] an order of
the data very well at low compression, as shown by the dotted Iinemagn'tUde' T_he exact solution IS contra;ted with the other
The low-compression fits a slope of 2.1 while the high-compressiofStimates which show a harmonic behaviar{2) at small
data joins the asymptotic limit of slope 1/3. Curves are, from top toé- At largeré, the power law overestimates the excess energy
bottom: truncated sphere approximati@ot-dashe semicircular ~ but this occurs ag~0.2. Nevertheless, the range g€fover
surface approximatiotdashey], and exactsolid). which a power law describes the data very well is more than

two decades.
the perspective of a droplet packing. We shall therefore con- We now investigate the validity of the two power-law
centrate on the droplet response to small compression.  functional forms we proposé.e., £ and[1/(1—£)3—1]%)

It is instructive to compare the forces predicted by thefor the exact solution of. We are interested in small com-
different estimates to the exact results. Figure 5 shows thpressions and therefore, the lowest-order expansien Bf.
ratio f/¢ for the exact solution, its lowest-order expansion(33) is used. As seen from Fig. 4, this expansion is perfectly
[Eqg. (33)], the semicircular surface model, and the truncatedralid for £<0.02. We first determine the effective exponent
sphere model. A harmonic potential would be represented byf the fitting form ¢* by combining Eqs(33) and (32) to
a constant value in such a plot. F&=0.001, the exact so- obtain
lution sharply drops to zero as does its lowest-order expan-
sion. On the other hand, d@sgoes to zero, the semicircular
surface model goes to (216/72), showing that the poten- é=—zf In(f/4). (35
tial becomes harmonic @ 0. Finally, the truncated sphere
model is fouqd to be. cl.oser. to a harmonic potential, haw_ng This allows us to define an effective exponérdlid for very
smaller relative variation inf/¢é. There are two essential small compression onlly
characteristics of the exact force. The first one is the anhar-
monic behavior of the force @— 0. This feature is respon-
sible for the logarithmic onset d& at ¢, predicted for or- dine ¢&f 2 In(f/4)
dered emulsion$5]. The second essential characteristic is m: P m (36)
that f/¢ increases as the displacement increases. These im-
portant features, we believe, are responsible for the charac-
teristic positive curvature db observed for disordered drop- characterizing the increase of the excess energy. The expo-
let packings. nent is obtained in terms of which can be numerically

An approximate functional form for the droplet potential converted tof using Eq.(34). The exponent for the second
would be useful in providing estimates of the elastic properditting form is obtained by a simple chain rule transforma-
ties of compressed emulsions. For this purpose, the increasien. Figure 7 shows thé dependence of the effective expo-
of f/¢ with the displacement can either be approximated by aient for each of the two different fitting forms we propose
power law ¢ with «>2 or by the addition of higher-order here. For both cases, points on the curve are bounded by
terms to a harmonic potential. The former is preferred how£<2%, since these results are derived from the lowest-order
ever, both for its simplicity and because it vanishes asxpansion of the energy. In contrast to what is suggested by
£—0, similarly to the exact solution. Fig. 6, the exponent is not constant for very small compres-

In view of investigating fitting functions, a logarithmic sion, but slowly decreases, going to 2 only &t 0. This
plot of & in terms of[ (R/h)3—1] is presented in Fig. 6. The notwithstanding, a power law with a fixed exponent provides
numerical solution of Eq(33) can be performed with a pre- a good approximation for the droplet potential over the range
cision larger than the one optimally possible when solvingof values of ¢ typically encountered in compressed emul-
directly for e [Eq. (22)]. Therefore, the low-compression val- sions.

log;o €
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FIG. 8. Relative excess surface energy per fieqt (24)], for a
FIG. 7. The effective exponent characterizing the increase of thgingle droplet as a function of the plate displacement
relative excess surface energylne/d Inx, wherex is either the  ¢=(R—h)/R. Curves are, from top to bottom,= 12 (fcc), 8 (low
displacement (solid), or a function of itf 1/(1—¢)3—1] (dashedt  compression bd¢ 6 (so), 4 (tetrahedron 2 (2 plates. All curves
In both cases, the maximum value &is 2%. are best fit to power law E¢37). Note that for clarity, not all cases
of Table | are shown here.

IV. NUMERICAL RESULTS

: . . of compressing planes which is equivalent to the coordina-

_ Except for special cases, as shown in the preceding segy,, nymper for space-filling cells. Using a fitting function of

tion, the excess surface energy of a deformed droplet Cafhe form

only be determined numerically. Given the Surface Evolver

(SE) software written by Brakk¢9], it is relatively easy to 3 N

calculate the shape of a single droplet with minimum surface s/n=C[(E) _ 1} (37)

area(energy under the constraint of fixed droplet volume h ’

and as a function of confinement. We have obtained results

for various confining polyhedral cells, some of which arewe find that both the coefficient, and the exponentg,

Wigner-Seitz cells associated with standard packing strucjepend om, as indicated in Table I. As mentioned before,

tures. The surprising result of this study is that for a considggq, (37) is equivalent toC’ (¢— ¢.)® when the droplet is

erable range of compressions, the energy is well described Rygnfined by space-filling polyhedra. As in the case of two

a power lawwhere the exponent depends on the number Ofarallel plates, this form fits the data better over a wider

faces of the confining cell. o range thart®. The data selected for the fit lie in tiieinter-
The starting state is a spherical droplet which is composegg| 2_g9s. This range was chosen to avoid errors associated

of either 3074 or 12 290 vertices. Most of the results preyyiin low values of¢. On the other hand, the upper value

sented here are for the latter case. The initial droplet is coniyes the range we are interested in. Indeed, since

fined inside a polyhedral cell having between fO%;ang 20521_(%/@)1/3, a face-centered-cubic structuréfcc,

faces. In particular, we used a rhombic dodecahe - _ ; ~0 E0/ i P

centered-cubi¢fcc)], a truncated octahedr¢hody-centered- @o=2/6) for instance, hag~9.5% in the dry foam limit

cubic (bcg)], and a simple cubé&so), all of which are space-

filing polyhedra. In addition, we compressed the droplet

within a tetrahedron, an octa_h edron, a pentagon dodecahﬁt— to the relative excess enerdiiq. (37)]. The various configura-

dron, and an ICosahedr_on. Simpler struc_tures were used %ns are ordered according to their coordination numbegrrors

well, namely, compression between a pair of parallel plate§ . in the last digit.

to compare to the results obtained in Sec. lll, and between

TABLE I. Values of the parameteS and « of the power-law

two perpendicular pairs of parallel plates. Results for twocnfiguration n c(10°?) o
parallel plates are shown as the open circles in Fig. 4. As
expected, they are in agreement with the analytic calculapair of | plates 2 7 2.1
tions down to very low compression where the change irfwo L pairs of| plates 4 12 2.1
surface area is comparable to the numerical uncertainty itetrahedron 4 14 2.1
SE. In all cases, the compressions leave the center of massbe(sg 6 21 2.2
unchanged so that a distanbefrom the center can be de- octahedror(low-¢ bco 8 27 2.3
fined. rhombic dodecahedroficc) 12 55 2.5
Figure 8 shows the calculated dependence of the relativgentagonal dodecahedron 12 54 25
excess energyEq. (24)] per facet,e/n, on & [EqQ. (2)] for  icosahedron 20 69 26

different types of confinement cells.represents the number
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Our results explicitly show that the response of a droplet 0.12
to compression is a nonlocal phenomentite response de- =)
pends on the number of planes used to compress the droplet
In addition, one might expect it to depend on the relative 0.10 r . A
positions of these planes, but it will be shown below that this
effect is not very important. It is worth noting that since 0.08 | . _
a(n)>2 for all cases, this response is weaker than a har-
monic interaction: the response is equivalent to having the
spring constant go to zero as the distortion vanishes. We also
note that a power law with an exponent which increases as o
the number of compressing planes increases is unphysical for 0.04 .
small compressions as the energy curves for diffemrent o
would cross. Thus, although the fits shown in Fig. 8 appear 0.02 | ]
convincing, the functional form should be viewed uniquely o
as a convenient way to mimic the response of a droplet.

In view of investigating the dependence of the relative
positions of the compressing planes on the droplet, we ob-
tained data for different configurations having the same
By comparing, say, the results of the fcc structure to those of
the pentagon dodecahedron, we see that the influence of the FIG. 9. The scaled excess energy density vs the volume fraction
configuration on the fitting parameters is marginal compare@s extracted from a droplet in a bcclf and fcc @) lattice. We
to that ofn. It therefore seems reasonable to conclude thaffind a crossover from fcc to bcc ate*=0.9331).
provided that the different facets of the droplet are not toopc=7/3/8=0.6802 for bce andr/2/6=0.7405 for fec.
close, the potential is only a function of the coordination
numbern. This information is valuable for modeling the ex- same volume. The mechanical equilibrium requirements of
cess energy of a droplet in a disordered emuldibf]l. A  the foam structure are contained in Plateau’s r{ile. To
second point of interest is the saturation of the expoment satisfy these rules, Kelvin showed that the faces of each cell
above n~12. Although the number of neighbors nearly are slightly distorted23]: the six quadrilateral surfaces re-
doubles from a rhombic dodecahedron to an icosahedron, thgain planar but curve their edges while the eight hexagonal
exponent barely changes. surfaces, in addition to sharing the same curved edges, be-

In a similar way, by comparing the excess energy ob-come nonplanar surfaces of zero mean curvature. The reduc-
tained by compressing a droplet in an octahedron to thaion in surface area from the undistorted Wigner-Seitz cell is
obtained for the truncated octahedron, one can determine tlapproximately 0.16%24,25. By using SE, Weaire and
importance of the second neighbors in the base-centere@®helan[26] recently showed the existence of a packing hav-
cubic(bco) lattice. We find that second neighbors do not playing an energy lower than the Kelvin structure. This space-
a role for ¢=0.90 (€~6.3%). Fore=0.93, the excess en- filling packing consists of six 14-sided polyhedra and two
ergy differences between the two is about 5%. Thus oveil2-sided polyhedra, all of equal volume, packed in a simple
most of the range of interest, only the eight nearest neighboreubic cell. This structure, which is based on the cubic clath-
are relevant. rate structure, has a surface energy approximately 0.3% less

than that of Kelvin. For comparison, the fcc structure has an
energy 0.7% higher than the Kelvin structys].
V. OPTIMAL PACKINGS FOR FOAM Since we have studied only a single droplet in a Wigner-

Our numerical results also allow us to compare the energ§eitz cell, we cannot add_ress the stability of the Kelvin struc-
of the various packings as a function of volume fraction. Foriure versus that of Weaire-Phelan fpr<1. However, we
a wide range of volume fractions, the lowest-energy state ofan study the crossover from the fcc packing to the bcc
monodisperse emulsions is believed to be a packing of drog<elvin-like packing ase increases. In Fig. 9, we plot the
lets in an fcc structure. We neglect temperature effects in théscaled energy densityJ, defined by
following argument. Fore> ¢,,~0.545, i.e., the melting
concentration of monodisperse hard sphef2g], up to U=E/V=3¢e(0/R) (38)
e<p.=m2/6=0.7405, i.e., close packing concentration,
the droplets remain spherical in an fcc structure as they caas a function ofe for a droplet in bcc and fcc structures.
pack without touching. Fop> ¢., the lowest-energy state Here, E is the excess surface energy= o(A—47R?). As
remains fcc until it changes to a new structuregdt<<l. expected, the energy density of the fcc structure is the lowest
That such a crossover must exist is clear from previous worlover a wide range op. But at¢* =0.9341), weobserve a
on dry foams. crossover to the bcc structure. This result is in agreement
In the limit ¢~1, an emulsion becomes a biliquid foam with a similar prediction by Kraynif27]. Note that this
which is structurally analogous to a dry foam. The lowest-crossover value is obtained strictly from surface energy con-
energy state of the latter has long been the object of studwiderations and may be superseded by other stability criteria.
For nearly one hundred years, it was thought that the KelvilMoreover, our calculation neglects some degrees of freedom
[23] structure based on a bcc packing of identical orthic tetsince it strictly involves compressing a droplet inside a poly-
rakaidecadedra gave an optimal space filling of cells of thénedral cell. This is more restrictive than compressing many

0.06 | o 1

U/(G/R)

m] L]
0.00 L—eanana abhen® | ) 1 X
0.65 0.70 0.75 0.80 0.85 090 095 1.00
¢
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droplets caged by their neighbors, and thus we are in fact 25
obtaining an upper bound on the energy. However, since the

energy of a drop in the shape of a truncated octahedron is
only 0.16% higher than the orthic tetrakaidecadedra of the 20 | _
Kelvin structure in the dry foam limit, the corrections to the )

crossover value resulting from the surface curvature of the

films between the droplets should be small. Note that the @ 15 .
crossover point is just above the volume fraction where sec- \\9
ond neighbors begin to play a role in the energy of a com- ?
pressed droplet in the bcc phase. Thus, while the six second < 1.0 | .

neighbors contribute to increasing the deformation of a drop-
let and thereby the surface area, the overall energy of the bcc /
structure is still lower than that of the fcc structure for 0.5 ¢ ]

¢>0.932. As we shall see in Sec. VI, second neighbors in W
L

the bcc structure are required for stability under shear defor- 0.0 . . . . . . .
mation. X

The little difference in energy shown in Fig. 9 is not spe- 00 05 10 1'35 22‘0 25 30 3540

. . oL - 10° (A +2/A - 3)

cific to bce and fec pairs. In fact, it is interesting to compare
the energy per droplet obtained for the regular pentagon
dodecahedrorirpd) to those obtained for the bcc and fcc
lattices. Since the rpd is not a space-filling objegtrepre-

FIG. 10. Typical calculated excess energy density of a droplet
compressed in an fcc lattice as a function of shear strain. The strain

; 2 _a.7.2
sents the ratio of droplet-to-cell volume for this case. If one'saIT::Zl;riget;?m’;iﬁ‘[B 133 Csljrv:g ;?:tf;?e ff;?:‘is atrs Sc?tlfotr:e
compares the energy per droplet as a function of the volum& — 0.787. 0.763. 0.746 ' ' P '
ratio, one finds that the results for the rpd are almost indis? ST

tinguishable from that of a truncated octahedron, i.e., the bcgtS through periodic boundary conditions put restrictions on

]tm'tf ceII.tIr? phart'(_:l_l#_‘"‘r' results; fct>rr] t?etrﬁ_d ﬁre :owerftha? thatthe possible orientations of the strains. Or, said differently,
orficc at highe. This suggests that at high volume Iractions, o, 1,6 grientations of the uniaxial strain involve forces that

it may be favorable for a compressed monodisperse emulsio&e not normal to the faces of the Wigner-Seitz cell, and it

to generate short-range icosahedral order such as it exists Bsults that some facets do not lie on the cell bound&ly
metallic glasses. This implies that as an emulsion is com- Here, the chosen orientation is along any of the three

pressed, it |s_||ke_|y to und_ergo a glass transition reminiscenf v ,ra| directions of a unit cell. For this particular choice, the
of that occurring in metallic glasses. Indeed, it is found to be

e . : _~“strain tensor is writtefi28
very difficult to obtain an ordered monodisperse emulsion h28]
experimentally, indicative of the deep energy minimum of an Y= % 5mn()\2m_ 1), (39)
amorphous state. At low volume fraction however, fcc

should be more stable and thus other facterg., residual where §,,, is the Kroneckers, N;=\,=A"2 and

pqudispersity must be responsible f(_)r the difficulty of ob- A3=A=1+e. € may be thought of as the magnitude of the
taining monodisperse ordered emulsions. small linear strain. The energy densltly of the structure is
given by

VI. RESPONSE TO SHEAR

U= %'YmnEmnpr')’pr ) (40)

We now turn to the response of a compressed droplet to
an impressed shear strain. Since we are considering a singkhere we use the summation conventi&ns a fourth-order
droplet, the scope of our method is limited to ordered lattensor which can be displayed as x 6 coefficient matrix
tices. All the space-filling confinement cells investigatedusing Voigt notatiorf5,29]. When a small isochoric uniaxial
here are related to the cubic point group and consequentlgtrain is applied, the energy density is found to vary as
the associated elastic constant tensor is composed of three
independent quantities. It is not possible for us to determine U= 3Gé? 41
these constants individually.

A useful method for applying a shear strain in the pres-where the effective shear modul@sis the combination of
ence of periodic boundary conditions is to use an isochorithe elastic constantsC(;— C;5)/2. Our definition ofG re-
uniaxial compressional-extensional strain. The effectiveduces consistently to the corresponding Laznastant when
shear modulus can then be extracted from the resultingonsidering an isotropic material.
change in surface energy. The isochoric uniaxial strain con- Figure 10 shows a typical result for the variation of sur-
sists in an extension of the Wigner-Seitz celllof1+ein  face area as a function of shear strain for an fcc lattice at
the, say, z direction, associated with a compression ofdifferent volume fractions. The strain is measured as
A~ in the perpendicular plane. In principle, different ori- A2+ 2/\ — 3 which is equivalent to & for small straing31].
entations of the Wigner-Seitz cell with respect to the refer-The slope of each curve 5/2.
encez axis would lead to effective measures of the modulus In Fig. 11, the shear modulus is shown for the sc and fcc
resulting from different combinations of the elastic con-lattices as a function of volume fraction. These results com-
stants. However, considerations of the alignment of the facpare well with the ones obtained by Buzza and Cé&fgs
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using Morse and Witten’s potentipd]. As we already men- 0.70 r . .

tioned, these authors found a shear modulus that rises con-

tinuously from zero atp., but that in contrast to the quasi- 0.60 F = o .

linear onset observed experimentally for disordered o

monodisperse emulsions, the obtairi@exhibits a logarith- 0.50 } o _

mically divergent first derivative at the onset. Similar to what =

they found for a sc lattice, the shear modulus of the fcc o 40 | o .0 ]

structure shows a steep but continuous rise from gexther B - N

than a jump at ¢.. S o030k & ° )
The isochoric uniaxial strain is peculiar in that with

A =2("3) it changes the metric tensor in such way to trans- 020 kot l

form a bcc lattice into an fcc lattice with the same density L

[30]. The net energy required for this transformation will 010 L |

depend on the volume fraction as we have seen in the previ- ’

ous section when comparing the energy of both lattices. For 0.00 . , ,

¢> ¢, and up to some’ <¢*, the bce structure was found “0.00 0.05 0.10 0.15 0.20

to be unstable @< 0) to an applied uniaxial strain. The ex- P -,

istence ofp’ derives from the stability of the bcc lattice over

the fcc lattice fore>¢*. Second neighbors are responsible  rig 11, shear modulus for a droplet in s@) and fec ()

for stabilizing the structure against shear strain and it is Nojyigner-Seitz confinement cells as a function of compression. Er-
surprising to find thaty’=0.90, the point where second yors are of the order of 10%g.=w/6=0.5236 for sc and

neighbors start touching the droplet. Our best estimate fox,/2/6=0.7405 for fcc.
¢', i.e., the volume fraction above which a bcc lattice has a o _ ) _ )
positive shear modulus for an isochoric uniaxial strain, isPotential in order to investigate the elastic response of disor-

0.9035), in agreement with estimates found in the literaturedered monodisperse emulsions. , )
[32]. The response to shear was also investigated for ordered

lattices and it was found that similar to previous studigs
the volume-fraction dependence of the shear modulus shows
Vil. DISCUSSION AND CONCLUSION a rather sharp increase at the onset of droplet toucling
We have shown that the droplet response to small comAlthough the anharmonicity of the potential certainly plays a
pressions in three dimensions is not harmonic and that #ole in the linear onset o& for disordered emulsions, it was
depends on the number of neighbors. For droplets comshown here that it is not sufficient. The experimental results
pressed between two parallel plates, the surface profile cagi/ently available6,8] are for disordered emulsions only.

be solved analytically for small deformations and integrate rq[erefd d!attitc:ies are e:;tsigr tto study t?ec;rtetically .kt)“t the ef-
numerically for arbitrary deformations. However, for other ects of disorder seem 1o be oo important fo pérmit compari-

geometries, the deformation can only be determined numerEOn with experl_m_ent. We _have shown els_ewh[été] that
cally. Using the Surface Evolver softwafg], we have de- oth anhz_irmonlcrfy and disorder are required to reproduce
termined the change in surface area of droplets compressélaie experimental results.

in a variety of confining polyhedra. Our results strongly sug- ACKNOWLEDGMENTS

gest that in three dimensions, though not in two, the response
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